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We analyze the steady state of a reaction in which mobile reactants diffusing under the action of a uniform
field may be absorbed by perfect or imperfect spherical traps. We obtain contour maps for the concentration
and for the probability distribution function for the first mobile neighbor of the trap. This permits a clear
visualization of the effects of a trap on the statistics of the mobile particles. We also obtain the trapping~or
reaction! rates for the two- and three-dimensional problems, and examine the influence of drift and trapping
strength. While in the absence of a field there is no steady state in two dimensions, we show here that the
addition of an arbitrarily small field suffices to make it possible. In the small-field limit, the reaction rate
vanishes as u ln(V/D)u21, where V is the drift velocity and D is the diffusion coefficient.
@S1063-651X~96!11812-2#

PACS number~s!: 05.40.1j, 66.10.Cb, 66.30.2h, 82.20.2w

I. INTRODUCTION

The analysis of nearest-neighbor distances in diffusion-
controlled reactions has received considerable attention in
the last few years@1–4#. In these studies a uniformly distrib-
uted set of random walkersA is assumed to be diffusing in
the neighborhood of a fixed~perfect or imperfect! trap B.
Due to trapping, a gradient of speciesA appears near the trap
@5,6#. The resulting perturbed region can be described in
terms of the probability density function~PDF! f (L,t) for
the nearest-neighbor distanceL to the trap. Using this func-
tion, it was shown that the average distance from the trap to
its nearest neighbor increases asymptotically as^L&;t1/4 in
one dimension@2,3#, and aŝ L&;(lnt)1/2 in two dimensions
@4#. In three dimensions a steady state is reached at long
times @2,3#.

The results mentioned in the preceding paragraph hold
when the diffusion of theA particles is completely unbiased.
On the other hand, diffusion-controlled reactions in the pres-
ence of biasing fields are of great interest in many areas. Let
us briefly mention a few instances:~a! In positron tomogra-
phy @7#, the addition of a strong electric field perpendicular
to the surface leads to greater sample penetration, allowing
for the investigation of regions situated farther away from
the surface.~b! In the problem of electromigration@8#, the
model discussed in this paper could be used to analyze the
effect of trapping centers on carrier concentration.~c! The
analysis of wetting layer growth at the surface of a critical
mixture requires the consideration of the diffusion of the
wetting molecules under the action of a uniform gravitational
field @9#, while the surface acts as a trap.~d! Gravity is also
responsible for the drift of water molecules diffusing under-
ground@10,11#. The distribution of water near underground
cavities turns out to be closely related to the results gener-
ated by our model for the special case of impenetrable ob-
stacles.~e! Finally, in order to understand the phenomenon
of particle segregation due to shaking in a gravitational field,
Alexander and Lebowitz considered driven diffusive flow

past an impenetrable obstacle in both the continuum and lat-
tice versions@12#.

Recently, we analyzed the effects of a uniform field on
the distribution of mobile particles in one dimension, show-
ing that a steady state is reached exponentially fast if the
field points towards the trap, while the depletion hole grows
rapidly if the field points away from the trap@13#.

In the absence of a bias, the two-dimensional problem is
clearly marginal. Any mechanism that contributes to replen-
ishing the depletion hole should lead to the existence of a
steady state. A uniform field that continuously bringsA par-
ticles to the trap neighborhood is one such mechanism. In
this paper we consider the effects of a uniform field on the
distribution of nearest-neighbor distances in two and three
dimensions. We will analyze the nature of this steady state,
indicating how it evolves when field intensity and trap
strength are modified. We will also compute the steady-state
reaction rate at the trap, which we expect to be a monotoni-
cally increasing function of field intensity and trap strength.
Of particular interest is the small bias limit in the two-
dimensional problem. In this case we obtain an approximate
analytical expression for the steady-state concentration. We
also show that the steady-state reaction rate vanishes as
u ln(V/D)u21, whereV is the drift velocity andD is the diffu-
sion coefficient.

It is interesting to note that a related model for diffusion-
controlled reactions, the so-called ‘‘trapping’’ model, in
which a particle diffuses in a medium containing a random
distribution of traps, leads to very different results. For this
model, the asymptotic survival probabilityS(t) is given by a
stretched exponentialS(t);exp(2ktd/(d12)), where k is a
constant andd is the system dimension@14#. Instead of fa-
voring a steady state, the addition of a field speeds up par-
ticle annihilation, leading to a simple exponential decay for
S(t) @15,16#.

After introducing our model in Sec. II, in Sec. III we
present an elementary discussion of the relation between the
field and the steady state in two dimensions. This is a point
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that does not seem to have been remarked upon in the litera-
ture. In Sec. IV we calculate the steady-state solution for the
concentration. An analytical solution is possible only in the
case of perfect traps. For imperfect traps we have developed
a simple algorithm that permits a rapid evaluation of the
solution for arbitrary values of the parameters. In Secs. V
and VI we study the steady-state statistical properties of the
nearest-neighbor distances to the trap and the reaction rates,
respectively. Using the procedure introduced in Sec. IV, we
analyze the small-field limit in Sec. VII.

II. MODEL

The underlying hypothesis is that the density of fixed re-
actants~traps! is low, so that we may neglect the interactions
between their regions of influence. We may then assume that
an imperfect trap of radiusa is located at the origin. Trap-
ping occurs with a conditional rateg given that a mobile
particle has reached the trap edge. We further assume that
the mobile particles are initially distributed in space with a
uniform concentrationC0, and that the constant field is ap-
plied in the direction of the negativez axis. Under these
conditions the position and time dependence of the concen-
tration att.0 can be found by solving the diffusion equation
with a bias,

]C

]t
5D¹2C1V

]C

]z
, ~1!

subject to the radiation boundary condition

D
]C

]r U
r5a

5~g2V cosu!Cur5a , ~2!

where r is the radial distance andu is the angle measured
with respect to thez direction. It is convenient to introduce
the dimensionless timet5Dt/a2 and radial distance
j5r /a. The discussion is also simplified if we use the di-
mensionless drift velocityW5Va/2D and trapping rate
G5ga/D.

III. EXISTENCE OF A TWO-DIMENSIONAL
STEADY STATE

Why does a steady state arise in two dimensions when a
small field is applied? Before working out the solution to the
model introduced in Sec. II, we wish to present a simple
argument to show that a steady state is possible for an arbi-
trary finite trap if a field is present. First, we note that, in the
absence of a field, a steady-state solution of Eq.~1! must be
of the form

C`~j,u!5@a1b ln~j!# f ~u!. ~3!

If we demand thatC`(j→`)5C0, thenb50. This re-
striction makes it impossible to find a steady-state solution
that also satisfies boundary conditions for a finite trap of any
shape ~the exception is, of course, the perfect reflector,
G50). However, since the logarithm diverges more slowly
than any power for large values of the argument, it is rea-
sonable to expect that any perturbation that favors the dis-
placement of particles from very long distances must lead to

a steady state. This can be seen most easily using dimension-
less Cartesian coordinates (x,z). The equation satisfied by
the steady state is then,

]2C`

]x2 1
]2C`

]z2
12W

]C`

]z
50. ~4!

Writing C`(x,z)5Co1X(x)Z(z), and applying the
boundary condition at infinity, it is clear that the solution
must be a superposition of functions of the form

e2auxue2~w6D!uzu,

whereD5AW22a2, with a being the separation constant.
We conclude the following,

~1! If W50, D is imaginary andZ(z) purely oscillatory;
the condition atz→` cannot be fulfilled: No steady state is
possible.

~2! If WÞ0, then all the components contain an exponen-
tially decreasing function. The exponential is present for any
value of WÞ0, regardless of how small, and makes the
steady state possible. Of course, the larger the value ofW,
the faster the solution tends to its asymptotic value.

~3! The previous observations do not have anything to do
with the trap. They are therefore valid for all trap shapes and
sizes ~if finite!. The boundary conditions at the trap edge
only determine the contribution of each component to the
solution.

IV. STEADY-STATE CONCENTRATION

The one-dimensional version of our model was solved
and discussed in Ref.@13#. In this section we present the
solution for the steady-state concentration in two and three
dimensions.

Following Smoluchowski@5# and Carslaw and Jaeger
@17#, we introduce a functionu @such thatu(t50)50#,
given by

C5C0~11ueWz!, ~5!

wherez5z/a is the dimensionless distance along the direc-
tion of the field. We perform a Laplace transform
@u(t)→ũ(s)#. In terms of the functionũ(s), Eqs.~1! and~2!
read

¹2ũ2q2ũ50 ~6!

and

]ũ

]j U
j51

5~G2Wcosu!ũ1~G22Wcosu!
1

s
eW cosu, ~7!

whereq25W21s and¹2 stands now for the dimensionless
Laplacian.

Next we obtain the steady-state solution of these equa-
tions.

A. Two-dimensional case„d52…

Following Ref.@17# we separate variables in Eq.~6! and
write
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ũ~j,u;s!5(
j50

` a j

s
cos~ ju!Kj~qj!, ~8!

with the Kj ’s being the modified Bessel functions of the
second kind@18#. The coefficientsa j are found by using the
boundary condition Eq.~7!, in which the exponential in the
last term is expanded in terms of the modified Bessel func-
tions of the first kind,I n ,

eW cosu5I 0~W!12 (
n51

`

I n~W!cos~nu!. ~9!

Equating the coefficients in the cosine expansion, we find the
relation

qa jK j8~q!2Ga jK j~q!1~W/2!@a j21Kj21~q!

1a j11Kj11~q!#5Bj , ~10!

with

B05GI 0~q!22WI1~q!

and

Bj52$GI j~q!2W@ I j21~q!1I j11~q!#%, ~11!

if j.0.
For a perfect trap (G→`), Eq. ~10! yields

a j52
« j I j~q!

Kj~q!
, ~12!

with e j522d j0. A full analytical solution is then possible.
By taking the inverse Laplace transform and then the long-
time limit, Carslaw and Jaeger@17# obtained the steady-state
solutionC`(j,u),

C`~j,u!5C0F12e2Wj cosu(
j50

` I j~W!

Kj~W!
« jK j~Wj!cos~ ju!G .

~13!

At long distances from the trap, we obtain the result

C`~j,u!5C0F12S p

2Wj D 1/2e2Wj~11cosu!F~u,W!G ,
~14!

whereF(u,W) does not depend on the distancej. As we
increasej, the steady-state solution goes exponentially fast
to its asymptotic value, except in the directionu5p, for
which the convergence goes only asj21/2; this shows that
the shadow extends very far behind the trap.

The high field result is also of some interest. IfW@1, Eq.
~13! leads to

C`~j,u!5C0@12j21/2e2W~j21!~11cosu!#, ~15!

which satisfies the boundary conditionC`(1,u)50, and goes
exponentially fast to the asymptotic result~except, again, for
the u5p direction!.

For a partially absorbing trap an analytical solution is not
possible. We will therefore develop a numerical method to
obtain the desired results. Equation~10! can be written in
matrix form as

MaW 5BW , ~16!

whereaW is the column vector formed by thea j ’s, andBW is
the column vector whose components are given by Eq.~11!.
The elements of the matrixM are

Mi ,i5qKi8~q!2GKi~q!,

Mi ,i115
W

2
Ki11~q!, ~17!

Mi11,i5
W

2
~11d i0!Ki~q!.

We can now find thea j ’s by numerical inversion ofM,
i.e.,

aW 5M21BW . ~18!

High precision is achieved using a relatively small number of
components. Since we are interested only in the steady state
~the long-time limit!, we may takeq5W.

In all the figures in this paper we will assume that the
concentration at infinity takes the valueC050.25. Contour
maps of the steady-state concentration are shown in Fig. 1
for W50.5 and two values of the absorption rateG. Figure
1~a! corresponds to an impenetrable trap; no reaction occurs.
Figure 1~b! corresponds to a more efficient trap. Note that,
with the chosen sign for the drift velocity, the current is
coming from the right. Further information is obtained by
plotting the steady-state concentration along particular direc-
tions. A plot of the concentration along the field (z) axis is
shown in Fig. 2 forW50.5 andG50 ~a! and 1 ~b!. Several
features of the graphs are evident.

~a! The depletion region behind the trap increases in range
and depth withG.

~b! If G,`, some of the particles hitting the trap wall are
reflected. This leads to an enhancement of the upstream con-
centration. IfG is low enough, this concentration becomes
higher thanC0 in the trap neighborhood; this effect is stron-
ger at high drift.

~c! Another consequence of the reflection at the trap wall
is the apparition of enhanced concentration lobes about the
trap. This was first noticed for the case of perfectly reflecting
obstacles (G50) in the work of the Australian group on
unsaturated seepage and subterranean holes, for which the
drift is due to gravity@10#. At large drifts, the enhanced
concentration lobes extend a large distance downstream,
while the disturbed region in front of the trap becomes very
thin. Of course, for a perfect trap (G5`), C50 at the trap
edge and no lobes appear.

By taking the limitW→0, it is easy to reobtain Taitel-
baum’s result in thet→` limit @see Eq.~3! in Ref. @4##
which, as was mentioned before, does not lead to a steady
state. However, sinceW50 is a marginal case in two dimen-
sions, a steady-state solution must exist for allWÞ0. In
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Sec. III we showed how the presence of a field introduces a
factor that decays exponentially in space. This allows for the
fulfillment of the boundary condition at infinity for any finite
trap size or shape, which makes the steady state possible. It
is easy to generate a steady-state concentration contour plot
for a ‘‘nearly marginal’’ case~say,W;10211). On the scale
of Fig. 1 such a plot would look perfectly symmetric, as if no
field were present. However, in practice it may take a very
long time for this steady state to be reached.

We conclude the analysis of the steady-state concentra-
tion in two dimensions by presenting a high-field (W52.5)
contour plot, where we can observe the downstream prolon-
gation of the high concentration lobes~see Fig. 3!.

B. Three-dimensional case„d53…

In the three-dimensional case the separation of variables
in Eq. ~6! leads to

ũ~j,u,f!5(
j50

`
a j

s

K j1 1/2~qj!

j1/2
Pj~cosu!, ~19!

wheref is the azimuthal angle andPj are the Legendre
polynomials. Next we expand the last term of Eq.~7! in
terms ofPj ,

~G22Wcosu!eW cosu5 (
n50

`

BnPn~cosu!, ~20!

with the coefficients

Bn5
2n11

2 E
21

1

dxPn~x!~G22Wx!eWx. ~21!

Substituting Eqs.~19! and ~20! into Eq. ~7!, we again
obtain an equation having the form~16!. The matrix ele-
ments ofM are now

Mi ,i5Ki11/2~q!FqKi11/28 ~q!

Ki11/2~q!
2G2

1

2G , ~22!

FIG. 1. Concentration contour plots (d52). In all figures the
trap radius is unity, andC050.25. HereW50.5 andG50 ~a! and
G51 ~b!.

FIG. 2. Concentration along thez axis (d52). HereW50.5
andG50 ~a! andG51 ~b!. Note the depletion and enhancement
regions behind and in front of the trap, respectively.
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Mi ,i115
W~ i11!

2i13
Ki13/2~q!,

Mi11,i5
W~ i11!

2i11
Ki11/2~q!.

An analytical solution is again possible for the perfect
trap (G→`). In the asymptotic long-time limit, we take
s→0 and, consequently,q→W. The inverse Laplace trans-
form leads to the steady-state solution

C`~j,u!5C0F12S p

2Wj D 1/2e2Wj cosu(
j50

`

~2 j11!

3
I j11/2~W!

Kj11/2~W!
Kj11/2~Wj!Pj~cosu!G . ~23!

At long distances from the trap, we again obtain an equa-
tion having the form of Eq.~14!, but with j21 replacing
j21/2 in the prefactor. The same can be said about the high-
field limit and Eq.~15!. TheW→0 limit will be examined in
Sec. VII.

For imperfect traps, we can use Eq.~23! to obtain steady-
state concentration contour maps. Figures 4 and 5 are the
counterparts of Figs. 1 and 3 for a three-dimensional system.
The concentration is axially symmetric with respect to the
field axis. Although we observe the same general features in
the two- and three-dimensional problems, the intensity of the
disturbance generated by the presence of the trap is notice-
ably weaker in the three-dimensional case. There are more
ways for particles to replenish the depleted region near the
trap, and there are more ways for the particles reflected at an
imperfect trap to leave the enhanced concentration region.
For this reason, we may speculate that the disturbed region

would become very small for high-dimensionality systems,
being confined to a thin boundary layer about the trap.

V. NEAREST-NEIGHBOR DISTANCES

The interest in the statistical properties of nearest-
neighbor distances in diffusion problems has been rekindled
by the work of Ben-Avraham and co-workers@1,2,19,20#. In
this section we evaluate the steady-state statistical properties
of the nearest-neighbor distances to the trap. The probability
that the nearest diffusing particle is at a~dimensionless! dis-
tance larger thanL from the trap in the direction specified by
the solid angleV is given by

FIG. 3. Concentration contour plot (d52) for G50.1 and
W52.5.

FIG. 4. Concentration contour plots (d53). HereW50.5 and
G50 ~a! andG51 ~b!. The concentration has a cylindrical symme-
try about thez axis.
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F~L,V!5e2ad*1
Ldjjd21C`~j,u!, ~24!

whered is the system dimension. Despite the axial symmetry
around the polar axis, we write explicitly the full angular
dependence to stress that the solid angle is fixed. The prob-
ability distribution function~PDF! of the distance from the
trap to the nearest mobile particle in the directionV can be
calculated by taking the derivative

f ~L,V!52
]F~L,V!

]L
. ~25!

This PDF satisfies the normalization condition

E
1

`

f ~L,V!dL51. ~26!
We remark that the physical meaning of this PDF is

slightly different from that found in Weiss, Kopelman, and
Havlin @2# or in Taitelbaum@4#. Since in the absence of a
field the distribution is angle independent, these authors de-
fine f (L) as the PDF of the distance from the trap to the
nearest mobile particle, regardless of the direction.

Using f (L,V), we could also evaluate the mean~dimen-
sionless! distance from the center of the trap to the nearest
neighbor in the directionV,

^L~V!&5E
1

`

L f ~L,V!dL5E
1

`

F~L,V!dL. ~27!

For a perfect trap, the PDF vanishes at the trap boundary,
but f (1,V) increases monotonically asG decreases. Cuts of
f (L,V) along the field axis in the two-dimensional case are
shown in Figs. 6, 7~b!, and 8~b! for G50.1, and the values of
W indicated in the captions. Contour plots for the PDF are
displayed in Figs. 7~a!–8~a!.

Figure 6 corresponds to the almost complete absence of
drift. The PDF has a minimum at the trap edge and, in the

FIG. 5. Concentration contour plot (d53) for G50.1 and
W52.5. The concentration has a cylindrical symmetry about thez
axis.

FIG. 6. A cut of the PDF along thez axis for thed52 problem
with G50.1 andW55310212. In the scale of the figure the PDF
has circular symmetry.

FIG. 7. ~a! PDF for the d52 problem with G50.1 and
W50.25. ~b! A cut of the PDF along thez axis.
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selected scale, looks completely symmetric. It agrees quali-
tatively with Taitelbaum’s results for long~but finite! times
@4#. However, ifW50 strictly, there is no field-induced re-
plenishment of the depletion volume and thef (L,t) maxi-
mum slowly moves to larger distances.

The effects of the field become evident in Figs. 7 and 8,
where the asymmetry generated by the particle accumulation
in front of the trap gives rise to a deformation of the high
PDF annulus surrounding the trap. As the field is increased,
the maximum that appears in front of the trap begins to
strengthen and shift toward the trap. For intense fields the
maximum is located at the trap edge, and a shoulder~Fig. 8!
or a second maximum~if W is large enough! appears. This
structure is due to the shape ofC`(j,u) in front of the trap:
From a maximum atj51, it decays very fast withj, rapidly
reaching a nonzero asymptotic value. As a consequence, the
integral in Eq.~24! undergoes a rapid change as a function of
L. The solid angle factorjd21 contributes to the appearance
of the shoulder~and, eventually, of a second maximum!, its
contribution being obviously stronger for higher dimensions.
This can be appreciated in Fig. 9, which corresponds to a

three-dimensional problem with a strong field, where we al-
ready observe a well-developed second maximum.

The field-induced modifications behind the trap are less
striking. SinceC`(j,p) increases monotonically withj,
there is a minimum atj51, and a rounded maximum at
intermediate distances. For smallW this maximum becomes
stronger and moves toward the trap as we increase the field,
but, for larger fields, this maximum eventually moves away
from the trap and its height diminishes. We finish this section
by remarking that, as was already noted, the perturbed vol-
ume becomes more compact ford53, an important feature
that is a direct result of the presence of more diffusion paths
in higher dimensions.

VI. REACTION RATES

The steady-state particle flux into the trap contains both
diffusive and convective contributions. It can be calculated
as the radial component of the dimensionless current density
at the trap surface,

FIG. 8. ~a! PDF for the d52 problem with G50.1 and
W52.5. ~b! A cut of the PDF along thez axis.

FIG. 9. ~a! PDF for the d53 problem with G50.1 and
W52.5. ~b! A cut of the PDF along the polar axis.
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J~u!5
1

C0
@¹W C`~j,u!12WW C`~j,u!#•hW uj51 ~28!

where ĥ is a unit vector pointing radially inwards. For a
perfect trap,C`(1,u)50 andJ(u) is computed directly as
the radial derivative of the concentration evaluated at the trap
boundary,

J~u!5
1

C0

]

]j
C`~j,u!U

j51

. ~29!

Explicit results can be obtained for the two- and three-
dimensional cases using Eqs.~13! and~23!, respectively. For
an imperfect trap, we can use Eq.~2! to obtain

J~u!5
C`~1,u!

C0
G. ~30!

The total trapping~or reaction! rate J can be found by
integratingJ(u) over the whole trap surface. In the two-
dimensional case, for a perfect trap, we obtain

J5p(
j50

`

~21! j« j
2I j

2~W!FWKj11~W!

Kj~W!
2 j G , ~31!

and, for an imperfect trap,

J52pGF11(
j50

`

~21! ja j I j~W!Kj~W!G . ~32!

In the three-dimensional case, for a perfect trap, we obtain

J512
p

W(
j50

`

~21! j~2 j11!I j1~1/2!
2 ~W!

3F2 j11

2
2W

Kj1~3/2!~W!

Kj1~1/2!~W!G , ~33!

and, for an imperfect trap,

J54pGF11S p

2WD 1/2(
j50

`

~21! ja j I j1 1/2~W!

3Kj1~1/2!~W!G . ~34!

The steady-state reaction rates are plotted as functions of
the drift speed in Figs. 10 and 11 for the two- and three-
dimensional cases, respectively. They increase monotoni-
cally with bothG andW, as they should. In theW→0 limit,
J→0 if d52, but it goes to a nonzero limit ifd53, in
agreement with Refs.@2# and @3#. For large fields, the prob-
lem becomes convection controlled, and the relative influ-
ence of diffusion weakens. Since the mobile particles can be
absorbed only as fast as they reach the trap neighborhood,
the high-field reaction rates have the form

J~W→`!5G~G!sW, ~35!

where s is the trap cross section andG is an increasing
function of G, which satisfiesG(0)50 ~perfect reflector!
andG(`)51 ~perfect trap!. These results have been con-
firmed by numerical studies at speeds higher than those ap-
pearing in the graphs.

VII. SMALL-FIELD LIMIT

As an application of the method introduced in Sec. IV, we
next calculate the steady-state concentration for an imperfect
trap in the small-field limit. We start with the two-
dimensional case, which is specially interesting due to the
absence of a steady state ifW50. Keeping only terms up to
orderW in Eqs. ~11! and ~17!, we can solve Eq.~16! ap-
proximately to obtain the eigenfunction expansion coeffi-
cientsa j . The approximate values forBi andMi j are

B05G1O~W2!,

B15~G22!W1O~W3!, ~36!

Bi;O~Wi !

and

FIG. 10. Total reaction rate at the trap as a function of drift
velocity for thed52 problem. The values ofG are indicated next to
the corresponding curves.

FIG. 11. Total reaction rate at the trap as a function of drift
velocity for thed53 problem. The values ofG are indicated next to
the corresponding curves.
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Mi ,i52~ i1G!
~ i21!!

2 SW2 D 2 i

,

Mi ,i115
i !

2 SW2 D 2 i

, ~37!

Mi11,i5
~ i21!!

2 SW2 D 2 i11

,

with

M0,05211G@ ln~W/2!1g#,

M0,15
1
2 , ~38!

M1,052W@ ln~W/2!1g#.

After substituting these expressions into Eq.~16!, it is
easy to see that the coefficientsa i must tend to zero at least
as fast asW2i . Therefore, by solving the reduced matrix
equation, we find

a05
G

G@ ln~W/2!1g#21
,

~39!

a i;O~W2i !.

Finally, we obtain the steady-state concentration

C`~j!5C0S 12
g1 ln~Wj/2!

g1 ln~W/2!21/G D . ~40!

This equation is valid in the regionj!W21, which becomes
arbitrarily large asW→0. Note that, in this approximation,
the problem is isotropic; theu dependence is introduced in
the next term of the expansion. Using Eq.~30! we can now
obtain the total reaction rate

J52
2p

ln~W/2!1g21/G
. ~41!

For a given~small! value ofW the reaction rate is an increas-
ing function ofG, as it should. Again theW dependence is
logarithmic, again pointing to the marginality of the two-
dimensional problem.

A similar calculation for the steady-state concentration in
three dimensions yields

a052
2G

G11 S W2p D 1/21O~W7/2!,

~42!

a i;O~W2i11/2!.

We then obtain the weak-field form of the concentration,

C`~j,u!;C0F12
G

~G11!j S 11
Wcosu

G~G12!j

3~2G2241G~G12!j2…!G ~43!

(j!W21), and of the total reaction rate,

J5
4pG

G11 F12W2
2

3

G222

G12 G . ~44!

It is evident that these asymptotic results agree with those
of Taitelbaum and co-workers@3,4#. Of course, the reaction
rate is a monotonically increasing function ofG. It goes to a
finite nonzero value in the absence of drift.

VIII. CONCLUSIONS

We have performed a detailed study of the steady state of
a diffusion-controlled reaction occurring in a two- or three-
dimensional space, where one species consists of mobile re-
actants diffusing under the influence of a uniform field, while
the other species behaves as a set of fixed~perfect or imper-
fect! traps. Although in the absence of a field there is no
steady state in two dimensions, the addition of the weakest
field will eventually drive the system to a steady state. We
have described the steady-state distribution of particles in the
trap neighborhood, showing that an enhanced concentration
~depletion! region usually arises upstream~downstream! an
imperfect trap. We have also analyzed the dependence of the
reaction rates and of the probability distribution function for
the first neighbor with field and trap strength. Our results
show that the volume of the perturbed region decreases when
the problem dimensionality is increased.

Since no completely analytic treatment is possible for im-
perfect traps, we introduced a simple matrix method that led
to ~a! approximate expressions in the small-field limit, and
~b! reliable numerical results for arbitrary values of the pa-
rameters. We stress that anybody interested can follow this
method to obtain results for any desired set of parameters
with a minimum of numerical work~the required matrix in-
version can be performed by any mathematics software on a
personal computer in a matter of seconds!.
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